Multi-objective Optimisation with Multiple Preferred Regions
نویسندگان
چکیده
The typical goal in multi-objective optimization is to find a set of good and well-distributed solutions. It has become popular to focus on specific regions of the objective space, e.g., due to market demands or personal preferences. In the past, a range of different approaches has been proposed to consider preferences for regions, including reference points and weights. While the former technique requires knowledge over the true set of trade-offs (and a notion of “closeness”) in order to perform well, it is not trivial to encode a non-standard preference for the latter. With this article, we contribute to the set of algorithms that consider preferences. In particular, we propose the easy-to-use concept of “preferred regions” that can be used by laypeople, we explain algorithmic modifications of NSGAII and AGE, and we validate their effectiveness on benchmark problems and on a real-world problem.
منابع مشابه
Application of a New Multi-agent Based Particle Swarm Optimisation Methodology in Ship Design
In this paper, a multiple objective ‘Hybrid Co-evolution based Particle Swarm Optimisation’ methodology (HCPSO) is proposed. This methodology is able to handle multiple objective optimisation problems in the area of ship design, where the simultaneous optimisation of several conflicting objectives is considered. The proposed method is a hybrid technique that merges the features of co-evolution ...
متن کاملPERFORMANCE-BASED MULTI-OBJECTIVE OPTIMUM DESIGN FOR STEEL STRUCTURES WITH INTELLIGENCE ALGORITHMS
A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-objective theory is proposed to solve multi-objective optimality problems. The optimality objectives are the roof displacement and structure weight. Two types of structure are analysed in this paper, a truss structure and a framework structure. Performance-based seismic analysis, such as classical and modal push...
متن کاملFinding middle ground? Multi-objective Natural Language Generation from time-series data
A Natural Language Generation (NLG) system is able to generate text from nonlinguistic data, ideally personalising the content to a user’s specific needs. In some cases, however, there are multiple stakeholders with their own individual goals, needs and preferences. In this paper, we explore the feasibility of combining the preferences of two different user groups, lecturers and students, when ...
متن کاملA reliability-based maintenance technicians’ workloads optimisation model with stochastic consideration
The growing interest in technicians’ workloads research is probably associated with the recent surge in competition. This was prompted by unprecedented technological development that triggers changes in customer tastes and preferences for industrial goods. In a quest for business improvement, this worldwide intense competition in industries has stimulated theories and practical frameworks that ...
متن کاملAdvantages of Multi-Objective Optimisation in Evolutionary Robotics: Survey and Case Studies
The application of multi-objective optimisation to evolutionary robotics has been so far relatively limited. Despite a few examples exist, the benefits of multi-objective optimisation when applied to the design of autonomous robotic systems have not been clearly spelled out and experimentally demonstrated. A survey of the literature on evolutionary robotics shows the lack of systematic studies ...
متن کامل